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ABSTRACT 

A discontinuous Galerkin formulation that avoids the use of discrete quadrature formulas is 

described and applied to linear and nonlinear test problems in one and two space dimensions. This 

approach requires less computational time and storage than conventional implementations but 

preserves the compactness and robustness inherent in the discontinuous Galerkin method. Test 

problems include the linear and nonlinear one-dimensional scalar advection of both smooth and 

discontinuous initial value problems, the two-dimensional scalar advection of smooth initial value 

problems that are discretized by using unstructured grids with varying degrees of smoothness 

and regularity, and two-dimensional linear Euler solutions on unstructured grids. 
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Introduction 

Computational methods for aeroacoustics must possess accuracy properties that exceed 

those of conventional second-order computational fluid dynamics (CFD) methods. At the same 

time, many problems of interest involve complex geometries that are not easily treated by 

common high-order methods that normally require a smooth, structured grid. In addition to the 

geometrically complex problem, we are particularly interested in strongly nonlinear flows that 

contain shock waves as a major source of sound generation, such as in the case of jet noise. 

In an effort to satisfy these requirements, the relatively untried discontinuous Galerkin (DG) 

method is being tested for hyperbolic problems. Some advantages of this approach include 

the ease with which the method can be applied to both structured and unstructured grids and its 

suitability for parallel computer architectures. This approach also has several useful mathematical 

properties. 

Johnson and Pitkärata1 proved stability and error estimates for linear scalar advection. In 

a series of papers, Cockburn et al.2-4 discussed the DG method with the use of approximate 

Riemann solvers, limiters, and total-variation diminishing (TVD) Runge-Kutta time discretiza- 

tions for nonlinear hyperbolic problems. In reference 2, the general formulation in one space 

dimension is provided; This work includes an analysis of the accuracy and stability (in terms 

of total variation) and a detailed description of the implementation. Numerical examples using 

the scalar equations are also provided. In reference 3, the method is applied to one-dimensional 

systems. Stability of the initial boundary value problem for a linear system is proved, and nu- 

merical experiments are presented for the one-dimensional Euler equations. In reference 4, the 

method is generalized to multispace dimensions. A main result in reference 4 is the design of 

a limiter that applies to general triangulations, maintains a high order of accuracy in smooth 

regions, and guarantees maximum norm stability. Jiang and Shu5 have also proved that the DG 

method satisfies a local cell entropy inequality for the square entropy, for arbitrary triangulations 



in any space dimension, and for any order of accuracy. This proof trivially implies L2 stability 

of the method for nonlinear shocked problems in the scalar case. 

Although the DG method has not been widely used in the CFD arena, several instances 

exist in which this method has been applied to the Euler or Navier-Stokes equations.3'4'6-9 Halt 

and Agarwal6 applied the method of moments (similar to the DG method) to the steady, two- 

dimensional Euler equations for subsonic flows. Bassi and Rebay7 applied the DG method 

to two-dimensional Euler equations for transonic flows and demonstrated the importance of the 

proper treatment of curved boundaries. In reference 8, Bassi and Rebay extended their method to 

the Navier-Stokes equations by introducing the gradient of the solution as an auxiliary variable. 

Most recently, Lowrie, Roe, and van Leer9 presented a fully discrete DG method for the unsteady 

Euler equations. Biswas, Devine, and Flaherty10 applied the DG method in an h-p version in 

an adaptive grid environment and considered the issues in using limiters for moments, as well 

as for parallel implementations. 

In the works described above, the integrals that appear in the formulation are evaluated with 

quadrature formulas. In this particular work, the DG method is implemented in a form that 

avoids the use of quadrature formulas with the goal of improving the efficiency of the method. 

In the first section, the DG method is described in general. Then, additional motivation for using 

the quadrature-free approach is given, along with specific details of the formulation. Storage 

requirements and operation count are also discussed, and the results of a stability analysis are 

given. It is shown that the primary arguments against the method, high storage requirements and 

a high operation count, are unjustified. The last section presents numerical results for one- and 

two-dimensional test problems. A linear scalar equation is used to verify the general properties 

of the DG method for solution expansions up to degree 12. The nonlinear Burgers' equation is 

used to demonstrate the shock-capturing capabilities of the method in one space dimension. The 

method is applied to both scalar advection and the linear Euler equations in two space dimensions 



to demonstrate the unstructured grid capability. This work focuses on the new formulation of 

the DG method and defers all discussion of boundary conditions to future articles. Hence, all 

test problems are treated as spatially periodic. 

General Discontinuous Galerkin Method 

Consider an arbitrary domain fi in which the solution is governed by a conservation equation 

of the form 

Ut + v • F = 0 (1) 

The DG method can be obtained by partitioning the domain onto smaller, nonoverlapping 

elements f2; that cover the domain and then applying a traditional Galerkin11 method to each 

element. The Galerkin approach within an element is defined by selecting a finite-dimensional 

basis set, approximating the solution as an expansion in that basis, and then projecting the 

governing equation onto each member of that basis set: 

B =  {bk,0<k<N(p,d)} (2) 
N 

Uüt « Vi = J2Vi>ib3 (3) 
i=o 

Vt + v • P) <Kl = 0 (0 < k < N, 0 < i < I) (4) 
/ i 

where / is the total number of elements. The basis set must be constructed from the lower 

order terms of a complete and linearly independent set. In the fully discrete approach,9 the basis 

set contains both temporal and spatial functions. In the semidiscrete approach, which is used 

here, the basis set contains only spatial functions, and the solution expansion coefficients v{j are 

functions of time. The number of terms in the expansion, N(p,d) + 1, depends on the degree 

of the expansion p and the number of time-space dimensions d that are represented. When the 

basis functions are polynomials of degree p, Johnson et al.1 proved the order of accuracy of the 



method to be at least p+1/2. In practice, however, the order of accuracy of the method observed 

in most cases is p +1. Except where the full form is needed for clarity, N(p, d) will be denoted 

simply by N to streamline the notation. 

The divergence term is recast by applying integration by parts as 

N 

[hJ2(Vi^tbJdÜ ~   fvh-FidSl +   j bkFf- ■ ds = 0 

(0<k<N,0<i<I)        (5) 

where ds is an outward-pointing surface-element normal and the flux vector FR is some 

approximation to a Riemann flux that depends on the solutions in both element i and the 

neighboring element. The approximate Riemann flux provides the crucial coupling between 

elements as well as the correct upwind bias required to ensure stability. 

Although equation (5) could be evaluated in physical space, the equation can be conveniently 

(and sometimes advantageously) represented in terms of coordinates that are local to the element. 

After such a mapping, equation (5) becomes 

fhf^ivt^tbjJidü -   fvbk ■ J^FiJidil +   j hJ^F? ■ Jtds = 0 

(0 < k < N, 0 < i < I) 
(6) 

where 

_  d(x,y,z) 
<Ji   —    \"i 1 ~ 0(^,0 ' 

and (£,»?, C) are the local coordinates within the element. 

Depending on the choice of basis functions and the form of Jz, the first integral can usually 

be simplified. If, for example, the basis set is orthonormal with respect to J,, then the first 

integral term in equation (6) reduces to an identity mass matrix. In most implementations, either 



the transformation is an isoparametric form (thus, J; is a polynomial) or the element is allowed 

to be an arbitrary polygon. In either case, the temporal term can be expressed as M2 V*, where 

Mi = [mj-j] is the mass matrix, V = [vi\, and 

mk,j =  / bkbjJidtt (7) 

In most cases, the mass matrix can be computed and inverted in advance of the main calculation; 

however, it must be stored for every element. In all previous implementations, the spatial 

integrals are evaluated with quadrature formulas that are appropriate to the element shape and 

the required degree of accuracy. The resulting N + 1 equations are then used to temporally 

evolve the coefficients of the solution expansion vij. 

In the present formulation, we place a fundamental restriction on the types of elements that 

are permitted. In particular, we require that all elements (except perhaps elements near a curved 

boundary) have a linear mapping to a simple similarity element, such as an equilateral triangle or 

a square in two dimensions (or other simple elements in three dimensions). With this restriction, 

the temporal term can be rewritten as J2M V*, where the mass matrix M is now defined by 

ra*,j =  / bkbjdft (8) 

ft 

As a consequence, M is the same for all elements of a given similarity shape (e.g., one M is 

applicable to all triangles, another is applicable to all squares, and so on) except those near a 

curved boundary. The considerable reduction in the amount of storage needed far outweighs the 

inconvenience that may arise from the restriction in element shape. 

Throughout the remainder of this discussion, the subscript that identifies the element will 

be omitted unless its use is necessary for clarity.   In addition, although the above discussion 

applies to a general basis set, the remaining discussion will assume that the basis functions are 

polynomials. In particular, the results presented later use a basis that is constructed from simple 

monomials (e.g., B   =   {l, x, y, x2, xy, y2_}). 



Quadrature-Free Approach 

Quadrature formulas, especially Gaussian quadrature formulas, are usually the most accurate 

and efficient means of evaluating integrals. However, this feature is based on the assumption 

that the data are readily available at the quadrature points (i.e., the data are stored there), which 

is typical for most finite-element and spectral-element methods. In these methods, the unknown 

variables are the values of the solution at the quadrature points, and the basis or "shape" functions 

are often the Lagrangian polynomials associated with the quadrature points. In the DG method, 

however, the formulation requires the evaluation of both volume and surface integrals, and no 

single set of TV + 1 quadrature points exists that can be used to evaluate all integrals to the 

required accuracy. Thus, the usual practice in the implementation of the DG method is to 

choose a basis and store the expansion coefficients. As a consequence, the evaluation of the 

volume integral, for example, requires TV + 1 operations at each quadrature point simply to 

obtain the data needed to evaluate the quadrature formula. Because all integrals must be exact 

for polynomials of degree 2p, the operation count for the complete evaluation of the volume 

integral is on the order of 2 to 3 times TV + 1 operations for each equation, with the assumption 

that optimal quadrature formulas exist. 

In contrast, if the basis functions are judiciously chosen such that integrals of products of 

the basis functions can be evaluated exactly, then the complete volume integral can be evaluated 

exactly in TV + 1 or fewer operations. A more precise comparison of the operation count is 

given in a later section. In the quadrature-free implementation, we derive a set of matrices 

that accomplish this task. Further, as a consequence of the restriction previously placed on 

the element type, these matrices are the same for all elements of a given type (i.e., one set of 

matrices applies to all triangles, another set applies to all squares, and so on). The result is a 

method with low storage requirements and low computational cost that retains the ability to treat 

unstructured grids in an accurate and robust manner. 



Flux Expansion 

—* 
To accomplish this task, however, an efficient method for expanding the flux vector F in 

terms of the basis set is needed: 

M 

F = Y,foi      M > NM (9) 
3=0 

where the number of terms in the expansion M depends on the form of the nonlinearity in F. 

To obtain the design order of accuracy, M must be at least as large as N(p+l,d), such that 

the degree of vb^ • F is at least as large as the degree of bk V. 

The expansion is trivially accomplished when F is a linear function of U. In this case, the 
—* 

coefficients fj are identically zero for j > N(p,d). Similarly, for common test problems such 

as the nonlinear Burgers' equation, F = ± U(x) can be obtained by multiplication so long as 

triple (and higher) products of the basis function are also easily integrated. Such is the case 

when the basis functions are polynomials in the local coordinates of a simple element. 

The more complex flux functions, such as those of the Euler equations, can be treated 

in several ways. One approach is that of Lowrie et al.,9 in which the solution expansion is 

applied to the parameter vector \y/p, yfpu, y/pv, y/pH] rather than the conserved variables 

[p, pu, pv, pe). Although this approach allows all nonlinear fluxes to be evaluated exactly, 

the coefficient matrices become dependent on the local solution. Hence, the coefficient matrices 

derived here would be different for every element and would need to be recomputed at every time 

step; as a result, the storage requirements and computational effort would be unacceptably high. 

A general alternative is to expand the flux in a Taylor series. Because the Euler equations 

consist of terms such as (pu) /p and (pu)(pv)/p, a practical procedure is to approximate p~ 

in the basis functions by using a Taylor series and then use multiplication to complete the flux 

expansion. 



Another approach is to define the flux in terms of the projection operator as follows. Let 
M 

p-1 «p =j2nbJ d°) 

then 

p-1 p = 1    =>     fbkppdn=   fbkdü        (k = 0,1, 2,..., M) (11) 
ft ft 

This set of equations results in a system that is linear in TJ and can easily be solved exactly. 

The flux terms, such as (pu)(pv)/p, can then be computed by multiplication, just as in the 

Taylor series approach. Alternatively, the projection method can be used to determine the flux 

expansion directly.   Let 
M 

(pu)(pv)/p » F =J2b^ (12> 
i=o 

Then, 

fbkPFdto=   (bk{pu){pv)dtt        (k = 0,1, 2,...,M) (13) 

ft ft 

defines a set of equations that is linear for /r 

The projection approach is appealing because the error of the approximate flux is minimized 

over the whole of the element, whereas in the Taylor series approach the flux will be more 

accurate near the center of the element than near the edges of the element. 

Volume Integral 

After the flux is represented as in equation (9), the volume integral of equation (6) can 

easily be rewritten as a matrix times a vector as 

JMVf - G- F +   fB3-1FR • Jds = 0 

JL (14) 

where V = [vk], G =   [gkJ], F =   /,- , B = [bk], 

fcj = J{vh)b -l 

(* = 0,1,2,...,iV;  j = 0,1,2,...,M) 



and M > N depends on the degree to which a nonlinear flux must be expanded. The vector 

matrix G is a constant for all elements of a given family and can be precomputed and stored. 

The evaluation of the volume integral becomes an order M + 1 operation for each of the JV + 1 

equations in the element. 

Boundary Integral 

The boundary integral is partitioned into segments associated with the sides of the element. 

The integral on each boundary segment can be rewritten in terms of a vector times a precomputed 

matrix; however, the procedure is complicated by the fact that FR is a function of the solution 

in the two elements on either side of a boundary segment and each of these elements has a 

distinct local coordinate system. The remedy is to translate each basis function from its local 

coordinate system to a coordinate system that is common to both elements. The use of a 

boundary-segment-based coordinate system actually results in a reduction in the total work and 

storage required. The complete process can be summarized in three steps: translate the solution 

to an edge coordinate system, compute the approximate Riemann flux in the edge coordinates, 

and project the flux onto the space defined by the element basis set. 

For clarity, the procedure is illustrated for a triangular element; however, the same procedure 

can be applied to all element types, and the procedure facilitates the use of mixed element types 

(i.e., squares and triangles together). Figure 1 illustrates a general triangle that has been mapped 

into a equilateral triangle. The equilateral triangle has a local coordinate system (£, rj) with its 

origin at the centroid of the element; each edge also has a local coordinate £ with its origin in 

the center of the edge. Note that the dimensionality of the edge coordinate system is lower 

than that of the element by 1. 

For each edge of the triangle, a constant matrix T, exists that relates each member of the 

local basis to an expansion in terms of the edge coordinate. The subscript j identifies the edge 
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Figure 1. Transform from general triangle to equilateral similarity triangle that shows 

coordinate systems associated with interior and edges of similarity triangle, 

to which the matrix applies. For example, on edge 0, 

B = [bt] 

11 r l 0     0    ...1 

n 
e = 

0 

0 

1      0    ... 
0      0    ... 
0      1    ... 

273      °     •- 

"1 

2 
T 1 

12 0      0    ... -   * 

* • :       : 

T0 [bj] = T0 B (16) 

The matrices for the other two edges are considerably more dense but are easily derived in exact 

form with the aid of a symbolic algebra package such as Maple or Mathematica. The Tj matrix 

for square elements is relatively sparse on all four edges. 

Given any function that is expanded in terms of the element basis, the expansion in terms 

of the edge basis B is derived as follows: 

JV 

Vi = 5>A= VJB= VJT.-B =   [V.-TjfB = VJjB (17) 
j=o 

hence, 

V,; 
T 

TJVl (18) 

After V{j has been computed on every face of every element, the flux through an edge 

can be computed without regard to the type of elements or the orientation of the coordinate 

10 



system of the elements that border the edge. At an arbitrary edge, illustrated in Figure 2, we 

arbitrarily designate one element to be on the left and the other to be on the right. The two edge 

s 

n, vL • / 
4 

1' 

Figure 2. Relation of edge coordinates of adjacent elements. 

coordinate systems of the two elements always point in opposite directions. A function of the 

edge coordinates of the right element can be represented in terms of the edge coordinate system 

of the left element simply by negating the odd members of V;j. In the three-dimensional case, 

the relation is not as trivial because a rotation may also be involved. 

In the present work, the Riemann flux is approximated by a simple Lax-Friedrichs flux of 

the form 

JJ-1^ - ds ~ I{[JJ_1(^ + ^r)] '"   " a(Vr " Vl)}ds (19) 

where ds = nds, the subscripts I and r denote the left and right sides of the edge, n points 

from left to right, and a is some smooth positive function that is greater in magnitude that 

the eigenvalues of the Jacobian of \ J J_1(F/ + Fr j   • n .  By applying equation (18), the 

Lax-Friedrichs flux is easily expressed in terms of the edge coordinate to give 

JJ_1F,Ä • ds = Y^Bds 

where 

F,    = [fo,f,lf,2f,3...] 

= {[jJ-^T^F, + ITipFr)] -n-aflTjVr - TJ/V/)}/2 

= {[-/J
-1
(FZ + ifr)] -n-a(lVr - V*)}/2 

(20) 

(21) 

11 



and I = diag(l, -1, 1, -1, ...) accounts for the difference in the left and right edge 

coordinates. The coefficients of the approximate Riemann flux on the right face are simply 

Fr = I_1F/. As a side note, depending on the form of the flux, less computational effort 

may be required to compute F directly from V than to translate the flux from element to edge 

coordinates, particularly for linear fluxes. 

Finally, the boundary integral is evaluated in the edge frame of reference by expressing bk in 

terms of the edge coordinates and collecting in terms of the components of F = [/o, /i, /2, • • •] • 

To illustrate, let [tk]J denote the kth row of Tj. The integral on a boundary segment becomes 

J(bk)(t
TB)ds = ^ ([**],. B)(FTB)<fc 

du du 

= J [(<*,o + hj + t^!2 + iMf + ...)• (/„ + M+h? + /sf + • • -)]ds 
dQ 

=   J[(tk,O + tkJ+tk^ + --.)f0   +   (tk,ot + tk!l?+tk,2? + ...)fl 

dQ 

+ (ifc,o <? + <fc,if + *fc,2f + - - )h ■ ■ ■] ds 

=  [ek]F (22) 

where [e^] is a constant row matrix that is easily evaluated exactly. Let E denote the matrix 

that is generated by applying the above process to each member of the basis set. The final form 

of the semidiscrete equation is 

V* M^G-F -^(M^EfcFt) 
fc=i 

= 0 (23) 

where ne is the number of edges and the matrices M_1G and M-1Efc are constant matrices that 

apply to all elements of a given type. Furthermore, these matrices can be efficiently precomputed 

by the procedure just described. 

12 



Computational Effort 

The effort required to evaluate the complete spatial operator is contained in three basic 

operations: the evaluation of equation (23) for each element, the evaluation of equation (18) 

—» _ _ 
for each edge of each element, and the computation of F and F from V and V, respectively. 

The operation count of the first two operations is directly related to the size of the matrices 

M_1G, M_1Efc, and T,. The row dimension of all three matrices is N(p,d) + 1. If the flux 

is linear, then the column space of M_XG is also N(p, d) + l. However, in the nonlinear case 

the flux must be expanded to at least degree p+l; thus, the column dimension must be at least 

N(p + 1, d) + 1. The column dimension of both M_1E* and T,- is N(p, d-l) + l. 

The operation count of the flux computation can vary considerably, depending on the 

complexity of the flux function. In the linear case, the operation count is on the order of 

N(p, d) + l and N(p, d - 1) +1 for F and F, respectively. The operation count in the nonlinear 

case could be as high as [N(p, d) + 1] [N(p +l,d) + l] and [N(p, d - 1) + l]2 for F and F, 

respectively. Thus, the total operation count for the spatial operator in a single element varies 

from 
d[N(p,d) + l]2 + 2ne[N(p,d) + l][N(p,d-l) + 1] 

(24) 
+ 0{d[N(p,d) + l] + ne[N(p,d-l) + l}} 

for the linear case to 

d[N(p,d) + l][N(p+l,d) + l] + 2ne[N(p,d) + l][N(p,d-l) + l] 
(25) 

+ 0{d[N(p+l,d) + l][N(p,d-l) + l] + ne[N(p,d-l) + l]2} 

for the nonlinear case. For these estimates the matrices are assumed to be full, which is not the 

case.   The exact form of N(p, d) is 

"M=*+fc$2 hi <*> 
(3p(p-l)       d = i 

and Table 1 gives N(p, d) + 1 for 1 < p < 6 and for 1 < d < 4. 

13 



In a conventional DG implementation (i.e., one that uses quadrature points), the operation 

count is on the order of 

[N(p,d) + l][(l + d)Ngv + 2neNqb]  + 0(dNqv + neNqb) (27) 

where Ngv and Ngb denote the number of quadrature points required for the volume integral and 

boundary segment integrals, respectively, and the last term denotes the cost of computing the 

flux at each quadrature point. Most references do not give the specific quadrature formulas used; 

however, Halt et al.6 referred to the work of Dunavant,12 who derived nearly optimal formulas 

in which Ngv > N(p, d) + 1 in order to evaluate the integral exactly to degree 2p. Thus, the 

operation count for the conventional DG implementation is greater than the values given by 

either (26) or (27) regardless of whether we take advantage of the sparseness of the matrices. 

When the DG method is compared with fundamentally different methods such as finite- 

difference or finite-volume methods, the comparison must be done in an equitable manner. To 

do so, we hypothesize that any two methods with the same order of accuracy and the same 

physical stencil size will yield similar results (for benign cases that do not violate the basic 

assumptions of the method). In practice, we compare methods that are of the same order of 

accuracy and have the same total number of dependent variables. In this frame of reference, the 

evaluation of the spatial operator is an operation of order N(p,d) + 1 or N(p + 1, d) + 1 per 

dependent variable for a linear or nonlinear problem, respectively. 

Time Integration and Stability 

The solution is advanced in time with a three-stage TVD Runge-Kutta method:13 

W° = Vn~l 

Wk  = ßkW° + (l-ßk)\w
k-1 + A<ä(W*

_1
)] k = 1,2,3 (28) 

Vn = W3 

where ßk = 0, 3/4, and 1/3 for k = 1, 2, and 3, respectively. 

14 



Fourier stability analysis has been applied to a generalized A'-stage form of equation (28) 

(i.e., k = 1,2,..., K) for the one-dimensional linear case of 

Ut + aUx  = 0 (29) 

to determine the stability limit A^- = a At/Ax. Results are given in Table 2 for K = 1, 2, and 3 

and for 0 < p < 11. The rapid drop in the stability limit as the order of the method is increased 

would normally be alarming in comparison with stability constraints of explicit finite-difference 

methods. However, if we again require that comparisons be made among methods that have the 

same total number of variables, then the size of the element in the DG method would be larger 

(by a factor of p + 1 in one dimension) than the mesh size of a comparable finite-difference 

calculation. Thus, most of the drop in the stability limit can be attributed to the definition of 

Ax. The last column of Table 2 gives \K{P + 1), which gives the DG stability limit in a form 

that facilitates comparison with the stability limit of a finite-difference method. 

Results 

One-Dimensional Test 

The one-dimensional version of this method has been tested on the linear problem 

Ut + aUx  =0 (30) 

and the nonlinear problem 

u* + \(U2)X = ° (31> 

on the domain 0 < x < 1 with periodic boundary conditions. 

A linear problem is solved first with smooth initial conditions £/(0, x) = | + sin(27r:r) to 

demonstrate the general accuracy properties of the method. The numerical solution is initialized 

by expanding the initial condition in a Taylor series about the center of each element.   All 

15 



components of the numerical solution are compared with the Taylor series of the exact solution 

after it has advected for several periods. The Ln error of the y'th component of the solution is 

defined as 

Ln(Sj)   = ^\vi,j-Ui,j\n')/I 

where u{j denotes the Taylor coefficient of the exact solution in cell i and / denotes the number 

of elements. A mesh-refinement study has been performed for p = 1 through 5. The time 

step was chosen to be sufficiently small such that the error would be dominated by the spatial 

operator; however, for p > 2 the time step varied as At oc (Ax)^+ '' so that the temporal 

accuracy would be of the same order as the spatial accuracy. Figure 3 shows the L\ error for each 

component of the solution for p = 1, 2, and 4. The convergence rate of the solution between 

any two grids, a and b, is defined by 

'•-{KIMS 
Table 3 gives the convergence rate between the two finest grids in the refinement sequence. 

Although most cases converge at the design rate of p + 1, the VQ term of the p = 1 case 

converges at a rate of approximately 3, which is 1 higher than expected. This faster convergence 

is fortuitous and occurs only because the basis functions are incidentally orthogonal. Because v\ 

is only second order and V2 is undefined, a solution of degree greater than 1 cannot be recovered 

at any point other than the element center without departing from the Galerkin framework. 

Furthermore, although vo converges faster than the design order, its error is still considerably 

larger than that of the formally third-order case (p = 2). 

In the second test case, the DG method is applied to the linear problem with a discontinuous 

initial solution: 

"«>•*> = {J   \IVX\ (34) 

16 



Figures 4 through 8 show several results for this case on a grid with 40 elements. Figures 4, 

5, and 6 show the solution after one period for p = 1, 2, and 6, respectively. Each method has 

small overshoots that are confined to the neighborhood of the discontinuity. Similar results were 

observed for up to p = 11 (twelth order). Figures 7 and 8 also show solutions for p = 6 (seventh 

order), but the solution has advected for 5 and 50 periods, respectively. The overshoots neither 

grow nor spread in time, which is in sharp contrast to the behavior of more traditional methods. 

A typical finite-difference approach, for instance, would tend to smear a contact discontinuity 

over a region that grows linearly in time. 

Next, the DG method is applied to a linear test case that was prescribed as part of 

the ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics;14 these 

results are compared with the finite-difference results described in reference 14. The test case 

consists of a Gaussian pulse that is advected across a uniform domain. The Gaussian pulse has 

a half-width of 6 and is initially centered on the origin of a domain that ranges from -20 to 450. 

Results are shown in Figure 9 for p = 1,2, and 3; however, as p is increased, the number of 

elements is decreased such that the total number of variables is approximately 470 (the number 

of points specified in the workshop). In Figure 10, the results of the fourth-order DG method at t 

= 400 are compared in detail with the results of a fourth- and fifth-order finite-difference method. 

The results obtained with the fourth-order DG method with only 117 elements is considerably 

better than that of either the fourth- or the fifth-order finite-difference method with 470 points. 

(Note that smooth curves are generated for the results obtained with the DG method by evaluating 

the solution at several points within each element.) 

The last one-dimensional test case is a nonlinear problem (eq. (31)) in which a shock 

forms from an initially smooth solution. This problem was used to not only demonstrate the 

robustness of the method but also to investigate the effect of truncating the nonlinear flux at 

various levels. We expect, based on the formulation, that the nonlinear flux must be expanded 
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to M = N(p + l,d) terms such that the degree of vbk ■ F is the same as the degree of bk V to 

obtain the design rate of convergence of p +1. This expected convergence property was verified 

by a mesh-refinement study in which the calculation was stopped just before shock formation. 

The mesh refinement was performed for several values of p, and the finest grid contained 320 

elements. Typical results, shown in Table 4 for p = 2, indicate that the convergence rate of 

the Loo error drops to approximately p when M = N(p, d) but is approximately p 4- 1 for 

all other cases. 

Figure 11 shows solutions for p = 1 and p = 2 (second and third order) in which the shock 

has formed and has begun to propagate. In both cases, the solutions were obtained without the 

use of limiters, added dissipation, or entropy correction terms. However, for the case in which 

p = 2 the nonlinear flux needed to be fully expanded (M = N(2p, d)); otherwise, the solution 

diverges shortly after shock formation. All higher order cases (p > 2) required some type of 

limiter. (Research is continuing in this area.) 

Two-Dimensional Test 

The DG method is applied to the scalar advection equation in two dimensions to demonstrate 

its robust treatment of unstructured grids. The test problem is given by 

Ut + aUx + bUy = 0 
(35) 

U(0,x,y) = [sin(7ra;) sin(7ry)] 

defined on the periodic domain 0 < x,y < 1. The approximate solution Vj is initialized from 

the Taylor expansion of the exact initial condition. The baseline case is chosen to be a uniform 

Cartesian grid that is triangulated in a regular manner, as illustrated in Figure 12. Figure 13 

shows the L\ error in the VQ component of the solution. As in the one-dimensional case, the time 

step was small so that the spatial error dominated and for p > 2 the time step was proportional 

to (Ax)(p+1^3. In mesh-refinement studies, the first grid in the sequence is coarsened as the 

order of the method is increased, so that the total number of variables is roughly the same. 
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The abscissa in Figure 13 is the square root of the total number of variables, which facilitates 

comparison with a simple fourth-order finite-difference method. The higher order convergence 

of the p = 1 case that was observed in one dimension is not observed in the two-dimensional 

case. The accuracies of the fourth-order DG and finite-difference methods are quite similar. 

One of the major motivations for pursuing a DG method is its ability to maintain accuracy 

for complex geometries. Here, the baseline grid is altered in several ways to test and demonstrate 

this capability. Figure 14 illustrates four of the variations that were tested. In the first case, 

grid A is uniform as in the baseline case, but the triangulation has been performed randomly. 

In the second case, grid B is generated from grid A by smoothly clustering the grid toward a 

diagonal. Grid C is generated from grid B by randomly perturbing each grid point by an amount 

that is less than 20 percent of the average mesh size. In the last case, grid D is generated from 

the baseline by imposing a piecewise-constant mesh spacing that places half of the points in a 

narrow band around the axis. 

In most cases, the measured error was insensitive to the grid modification or the direction 

of propagation (i.e., the value of a and b). Figure 15 gives the L\ error for p = 3 (fourth order) 

on each of the grids shown in Figure 14. Results for other values of p were similar. The results 

in Figure 15 are for a = 1 and 6 = 0 (except for case D2, where a = 1 and 6=1). The slight 

increase in error in case D2 is attributed more to the increase in mesh size along the propagation 

path than to the discontinuous manner in which the mesh size changes. 

In the last test case, the DG method is applied to another problem prescribed as part of the 

ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics.14 The linear 

Euler equations are solved on a square domain of dimensions —100 < x,y < 100 with initial 

conditions that place a compact acoustic source at x = y = 0 and a convecting disturbance at 

x = 67, y = 0. Here, the equations have been recast in a form that emphasizes the decoupling 
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of the convection terms from the acoustic terms that occurs in this linear system: 

dU       dE       dF _ 
dt        dx        dy 

(36) 

where 

U = 

Mx   =   0.5, Mv 

p-P 

P 
u 
V 

0, and 

F = 

Ux{p-py 
MXP + u 
Mxu + P 

Mxv 

G 

'My(p-P) 
MyP  +  V 

MyU 

Mvv + P 

(p-P)(0,x,y) = 0.1 exp (-In (2)) 
(x - 67)2 + y7 

u(6,x,y) 

u(0,x,y) 

exp (-In (2)) | 
xl + y 

9 

25 
2\1 

0.04xP(0,x,y) 

0.04yP(0,x,y) 

The workshop, which targeted finite-difference methods, prescribed a grid of 200 x 200. In the 

present calculation, a uniform n x n Cartesian grid is used that has been randomly triangulated 

(as shown in Figure 14(a)) and in which the number of elements is chosen as a function of 

the degree p such that the total number of unknowns equals approximately 2002. Results are 

shown for p = 0, 1, 2, and 3 (first, second, third, and fourth order) with n = 141, 81, 57, and 

44, respectively. Figure 16 shows P and u at t = 40 for the p = 3 case. The wave fronts 

appear smooth and cylindrical in spite of the fact that the initial disturbance was smaller than 

the element size. A more quantitative comparison is shown in Figures 17 and 18. The pressure 

P is plotted on the x = 0, t — 40 line for p = 0 through 3 at the resolution given above. 

Also shown is a fine-grid solution with p = 3 and n = 132 and the solution from a fifth-order 

finite-difference method on a 200x200 grid. An enlargement of the right peak (Figure 18) shows 

that all solutions of third-order accuracy or better yield similar results. 
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Conclusions 

A quadrature-free form of the discontinuous Galerkin (DG) method has been formulated for 

the hyperbolic conservation laws. This approach reduces both the storage and operation count 

to levels that are comparable to high-order finite-volume methods. The method is well suited to 

both unstructured and structured grids and has been tested on several one- and two-dimensional 

problems to demonstrate its accuracy and robustness. On smooth meshes, the accuracy of the DG 

method is comparable to or better than traditional high-order finite-difference methods. Contact 

discontinuities are advected without the usual diffusion effect, and nonlinear discontinuities 

(shocks) are propagated by second- and third-order methods without the use of limiters. On 

two-dimensional unstructured grids, random and discontinuous mesh variations had little effect 

on the error and no effect on the convergence of the error. 
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Table 1. N(p,d) + 1 for Specific Values of p and d 

< I 
V 1 2 3 4 

1 2 3 4 5 

2 3 6 10 15 

3 4 10 19 31 

4 5 15 31 53 

5 6 21 46 81 

6 7 28 64 115 

Table 2. A&-   =  a At/Ax for ^T-stage Runge-Kutta Methods Applied to 

DG Method of Degree p (order p + 1): j denotes unstable method 

P Ai Aj2 A3 A3(p+ 1) 

1.256 

0.818 

0.627 

0.52 

0.445 

0.396 

0.306 

0.32 

0.297 

0.27 

0.253 

0.24 

0 1.0 1.00 1.256 

1 0.001 0.333 0.409 

2 t 0.06 0.209 

3 t 0.02 0.13 

4 t 0.01 0.089 

5 $ 0.006 0.066 

6 t 0.004 0.051 

7 4- 0.003 0.04 

8 $ 0.002 0.033 

9 4- 0.002 0.027 

10 t 0.001 0.023 

11 $ 0.001 0.02 

t Unstable method 

Table 3. Convergence Rates of L-[ (SJ) Between Two Finest Grids 

j 
P 

0 1 2 3                4 

1 2.990 2.133 

2 3.064 3.049 3.022 

4 4.99 5.74 5.00 5.00           5.00 
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Table 4. Effect of Truncating Nonlinear Flux on Grid Convergence: p = 2 case 

Convergence Rate M 

N(p,d) N(p+l,d) N(p + 2,d) 

2.894 

2.015 

2.944 

2.923 

2.942 

2.921 

L^e.) 

10 

10' 

10 

10 

10 

10 
-10 

10 

(/) 

Figure 3. Convergence of L\ error for p = 1, p = 2, and p = 4. 
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Figure 4. Solution of linear problem after one time period, produced by DG method with p = 1. 

24 



n..n «*■     n A1II4-. rt« 

1.2 

1.0 

0.8 

O-- -p: - numerical solution 

p45ID333333333333?n 

?                \ 
V0        0.6 1                  | 

0.4 
l 

0.2 

on 

1 

23333333^- 4Rm333D 

-0.2 1 1 

0.0          0.25             0.5             0.75           1.0 

X 

Figure 5. Solution of linear problem after one time period, produced by DG method with p = 2. 
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Figure 6. Solution of linear problem after or ie time period, produced by DG method with p = 6. 
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Figure 7. Solution of linear problem after five time periods, produced by DG method with p = 6. 
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Figure 8. Solution of linear problem after 50 time periods, produced by DG method with p = 6. 
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Figure 9. DG method applied to advection of Gaussian pulse, a) p = 1 with 235 

elements, b) p = 2 with 156 ele men ts. c) p = 3 with 1 ] 7 elemen ts. 

27 



390.0 400.0 

x 

410.0 

Figure 10. Comparison of fourth-order DG method with fourth- 

and fifth-order finite-difference (FD) method. 
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a) 

Figure 11. Solution of nonlinear equation, a) p = 1. b) p = 2. 

29 



Figure 12. Triangulated grid and solution of scalar advection problem. 
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Figure 13. Convergence of solution for scalar advection on 

unstructured grid for various orders of accuracy. 
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Figure 14. Variation on baseline unstructured grid, a) Grid A, Random triangulation. b) Grid 

B, Smoothly clustered toward diagonal, c) Grid C, Random perturbation of 20 

percent of the mean cell spacing, d) Grid D, Discontinuous mesh variation. 
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Figure 15. Convergence of solution for scalar advection for fourth-order 

method on variations of baseline unstructured grid. 
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Figure 16. Acoustic wave modeled by linear Euler equations: p = 3 and t = 40. a) P. b) u. 
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Figure 17. Solution of linear Euler equations: pressure on x = 0 at t = 40. 

0.1 

0.075    - 

0.05 

33 36 38 41 

Figure 18. Solution of linear Euler equations: enlargement of 
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